

Katie Gold, Cornell University

Rocio Calderón, Hannah Brodsky, Jaclyn Eller (CSUN), Andrew Miles (PSU), Natalie Mahowald, Sharifa Crandall (PSU), and Ryan Pavlick (JPL)
NASA ROSES Interdisciplinary Sciences Grant #80NSSC20K1533

Science

POLICY FORUM FOOD SECURITY

A global surveillance system for crop diseases

M. Carvajal-Yepes¹, K. Cardwell², A. Nelson³, K. A. Garrett⁴, B. Giovani⁵, D. G. O. Saunders⁶, S. Kamoun⁷,...

+ See all authors and affiliations

Science 28 Jun 2019: Vol. 364, Issue 6447, pp. 1237-1239 DOI: 10.1126/science.aaw1572

No remote sensing!

Disease causes 15-30% yield loss annually: \$220 billion lost

>1.1 billion pounds of pesticide usage annually in US alone

Pesticides critical for modern agriculture, but overuse threatens biodiversity

Fusarium oxysporum (F.oxy)

- Causes Fusarium Wilt (FW)
- Endemic to all six crop producing continents
- 100+ susceptible hosts
- Survives in soil for 20+ years
- Annual yield losses ~10-60%
- Range expected to expand greatly under predicted climate change scenarios (Shabani et al. 2014)

Preserving existing agroecosystems is critical to preserving natural ecosystems and global biodiversity

Ginoux et al. 2012

Soil dwelling fungi are capable of aerosolization and transport in global dust plumes.

Griffin 2001, Kellogg 2004, Barberan 2015

Infectious *F.oxy* spores and DNA have been isolated from North African and Asian dust samples.

Yeo & Kim 2002, Palmero 2011, Giongo 2013, Gonzalez-Martin 2014

CABI, 2019

• Global pathogen distribution

- Global cropland mapping
- Conducive plant disease environment
- Dust source regions modeling
- · Concordance evaluation: incidence locations vs. modeled source regions

Conducive **Environment**

Susceptible Host

Susceptibility Assessment

Global pathogen distribution

Rocio Calderón

Global cropland mapping

Harmonized Landsat Sentinel-2

· Conducive plant disease environment

Ryan Pavlick

· Dust source regions modeling

• Concordance evaluation: incidence locations vs. modeled source regions

Aerosol Transport: CESM CAM6-MIMI

Hannah Brodsky

Natalie Mahowald

- Community Earth System Model (CESM)
 - Earth System Model linking land, ocean, atmosphere, and ice models
- Community Atmosphere Model (CAM6)
 - State of the art climate model, can simulate weather events
 - Includes: dust, sea salts, sulfates, soot, and organic carbon aerosols
- MIMI framework
 - MIMI = Mechanisms of Intermediate Complexity for Modelling Iron
 - Aerosol processing framework, makes it easy to simulate spore viability during transport

Incorporating ag dust and spores

- Compare CAM6-MIMI to observations
- 2. Incorporate ag dust into model
- 3. Incorporate spores into model
- 4. Kill spores during transport
- 5. Spore differentiation by region
- 6. Run the model from 1980-2020

Hannah Brodsky

Natalie Mahowald

Data Min = 0.0, Max = 1.9

0.3

Spore traits that influence dispersal and atmospheric survival

			,
Spore Type	Spore Information	Reference	
Ciceris	Chlamydospore diameter 4.8-8.1 μ m; Microconidia size 5.1-12.8 x 2.5-5.0 μ m; Macroconidia 16.5-37.9 x 4.0-5.9 μ m	Arvayo-Ortiz et al., 2011; Dubey et al., 2010	
General	average ascospore size: 21 um x 3.5 µm; 19–24 x 3–4 µm and macroconidia as 25–50 x 3–4 µm	Booth, 1971; Trail et al., 2002	
General	long-distance ascospore dispersal will not be effective at relative humidity less than 50 %	Beyer et al., 2005	
General	Gravitational settling of 1-2 mm per s-1 in still air	Keller et al., 2014	

Andrew Miles

Sharifa Crandall

kg557@cornell.edu

Twitter @KaitlinMGold blogs.cornell.edu/goldlab

